Prediction of EF-hand calcium-binding proteins and analysis of bacterial EF-hand proteins.

نویسندگان

  • Yubin Zhou
  • Wei Yang
  • Michael Kirberger
  • Hsiau-Wei Lee
  • Gayatri Ayalasomayajula
  • Jenny J Yang
چکیده

The EF-hand protein with a helix-loop-helix Ca(2+) binding motif constitutes one of the largest protein families and is involved in numerous biological processes. To facilitate the understanding of the role of Ca(2+) in biological systems using genomic information, we report, herein, our improvement on the pattern search method for the identification of EF-hand and EF-like Ca(2+)-binding proteins. The canonical EF-hand patterns are modified to cater to different flanking structural elements. In addition, on the basis of the conserved sequence of both the N- and C-terminal EF-hands within S100 and S100-like proteins, a new signature profile has been established to allow for the identification of pseudo EF-hand and S100 proteins from genomic information. The new patterns have a positive predictive value of 99% and a sensitivity of 96% for pseudo EF-hands. Furthermore, using the developed patterns, we have identified zero pseudo EF-hand motif and 467 canonical EF-hand Ca(2+) binding motifs with diverse cellular functions in the bacteria genome. The prediction results imply that pseudo EF-hand motifs are phylogenetically younger than canonical EF-hand motifs. Our prediction of Ca(2+) binding motifs provides not only an insight into the role of Ca(2+) and Ca(2+)-binding proteins in bacterial systems, but also a way to explore and define the role of Ca(2+) in other biological systems (calciomics).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction and Analysis of Canonical EF Hand Loop and Qualitative Estimation of Ca2+ Binding Affinity

The diversity of functions carried out by EF hand-containing calcium-binding proteins is due to various interactions made by these proteins as well as the range of affinity levels for Ca²⁺ displayed by them. However, accurate methods are not available for prediction of binding affinities. Here, amino acid patterns of canonical EF hand sequences obtained from available crystal structures were us...

متن کامل

In Silico Prediction and Analysis of Caenorhabditis EF-hand Containing Proteins

Calcium (Ca⁺²) is a ubiquitous messenger in eukaryotes including Caenorhabditis. Ca⁺²-mediated signalling processes are usually carried out through well characterized proteins like calmodulin (CaM) and other Ca⁺² binding proteins (CaBP). These proteins interact with different targets and activate it by bringing conformational changes. Majority of the EF-hand proteins in Caenorhabditis contain C...

متن کامل

Sequence motifs determine structure and Ca++-binding by EF-hand proteins.

Prediction of protein structural and functional characteristics based on specific motif interactions could serve as a powerful tool in many facets of the biological sciences. Such improvements in protein modeling will be instrumental in the enhancement of drug design. A new approach to a sequence description of EF-hand motifs with more than one EF-hand domain is presented here; this permits pre...

متن کامل

Two Structural Motifs within Canonical EF-Hand Calcium-Binding Domains Identify Five Different Classes of Calcium Buffers and Sensors

Proteins with EF-hand calcium-binding motifs are essential for many cellular processes, but are also associated with cancer, autism, cardiac arrhythmias, and Alzheimer's, skeletal muscle and neuronal diseases. Functionally, all EF-hand proteins are divided into two groups: (1) calcium sensors, which function to translate the signal to various responses; and (2) calcium buffers, which control th...

متن کامل

Understanding the EF-hand closing pathway using non-biased interatomic potentials.

The EF-hand superfamily of proteins is characterized by the presence of calcium binding helix-loop-helix structures. Many of these proteins undergo considerable motion responsible for a wide range of properties upon binding but the exact mechanism at the root of this motion is not fully understood. Here, we use an unbiased accelerated multiscale simulation scheme, coupled with two force fields ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proteins

دوره 65 3  شماره 

صفحات  -

تاریخ انتشار 2006